MATLAB

Para la Ciencia de Datos

Explore datos, cree modelos de machine learning, realice análisis predictivo.

MATLAB facilita tareas de data science con herramientas para acceder y preprocesar datos, crear modelos predictivos y de machine learning, y desplegar modelos en sistemas de IT empresariales.

Aprenda data science mediante MATLAB con nuestra serie de cuatro cursos en Coursera

Curso

¿Por qué utilizar

MATLAB para Data Science?

Análisis exploratorio
de datos

Dedique menos tiempo a preprocesar los datos. Desde datos de sensores de series temporales hasta imágenes o texto, los tipos de datos de MATLAB reducen significativamente el tiempo necesario para preprocesar los datos. Las funciones de alto nivel hacen que sea sencillo sincronizar series temporales dispares, sustituir valores atípicos con otros interpolados, filtrar señales con ruido, separar texto sin procesar en palabras y mucho más. Visualice los datos con rapidez para comprender las tendencias y detectar problemas de calidad de los datos mediante gráficas y Live Editor.

Machine learning aplicado

Encuentre los mejores modelos de machine learning. Tanto si es un novato que necesita ayuda en sus primeros pasos con machine learning como un experto que quiere evaluar con celeridad muchos tipos diferentes de modelos, las apps para clasificación y regresión le ofrecen resultados rápidamente. Escoja entre una gran variedad de los algoritmos de clasificación y regresión más conocidos, compare modelos basados en métricas estándar y exporte modelos prometedores para su posterior análisis e integración. Si prefiere escribir código, puede emplear la optimización de hiperparámetros integrada en las funciones de entrenamiento de modelos, para encontrar rápidamente los mejores parámetros con los que ajustar su modelo.

Despliegue plataformas múltiples

Despliegue los modelos de machine learning donde quiera, incluido código C/C++, código CUDA®, sistemas de IT empresariales o la nube. Si lo que busca es rendimiento, puede generar código C autónomo a partir de su código de MATLAB para crear modelos desplegables con una velocidad de predicción de alto rendimiento y escasa necesidad de memoria. También puede exportar los modelos de machine learning para su uso en Simulink o desplegar los modelos en MATLAB Production Server para su integración en aplicaciones web, de bases de datos y empresariales.