MATLAB y Simulink

Para procesamiento de señales

Analice señales y datos de series temporales. Modelice, diseñe y simule sistemas de procesamiento de señales.

Los ingenieros de procesamiento de señales utilizan MATLAB y Simulink en todas las etapas del desarrollo, desde el análisis de las señales y la exploración de los algoritmos hasta la evaluación de los tradeoffs en la implementación de los diseños para la creación de sistemas de procesamiento de señales en tiempo real. MATLAB y Simulink ofrecen:

Análisis y mediciones de señales

MATLAB y Simulink le ayudan a analizar las señales mediante apps integradas para visualizar y preprocesar señales en los dominios del tiempo, la frecuencia y el tiempo-frecuencia, para detectar patrones y tendencias sin tener que escribir código a mano. Puede caracterizar las señales y los sistemas de procesamiento de señales mediante algoritmos específicos para cada dominio en distintas aplicaciones, tales como comunicaciones, radar, audio, dispositivos médicos e Internet de las cosas (IoT, por sus siglas en inglés).

Diseño y análisis de filtros

Diseñe y analice filtros digitales, desde diseños básicos monofrecuencia de paso bajo o alto hasta otros más avanzados FIR e IIR, incluidos filtros multifrecuencia, multietapa y adaptativos. Puede visualizar la magnitud, la fase, el retardo de grupo y la respuesta al impulso, así como evaluar el rendimiento del filtro, incluidas la estabilidad y la linealidad de fase. Los diseños de filtros se pueden analizar y simular para evaluar los efectos de diferentes estructuras internas y tipos de datos de punto fijo. También pueden generar software embebido o implementaciones de hardware. Para casos de uso avanzados o en aplicaciones específicas, puede aprovechar filtros y bancos de filtros prediseñados, tales como bancos de filtros basados en wavelets, bancos de filtros de espaciado perceptivo o canalizadores.

Machine learning y deep learning

Con MATLAB, puede crear modelos predictivos para aplicaciones de procesamiento de señales. Puede aprovechar los algoritmos de procesamiento de señales integrados para extraer funcionalidades destinadas a sistemas de machine learning, así como trabajar con conjuntos de datos de gran tamaño para introducir, aumentar y anotar las señales durante el desarrollo de aplicaciones de deep learning.

E-Book

Gratuito

Aprenda los conceptos básicos de IA para el procesamiento de señales y las tareas asociadas con la preparación de datos de señales y el modelado de una aplicación de deep learning.